PUBLICATIONS

Avelino Bueno

Selected publications

 

 

 

Álvarez, V*., Frattini, C*., Sacristán, M. P*., Gallego-Sánchez, A., Bermejo, R. and Bueno, A. (2019). PCNA Deubiquitylases Control DNA Damage Bypass at Replication Forks. Cell Reports 29: 1323-1335. doi: 10.1016/j.celrep.2019.09.054

Gallego-Sánchez, A., Andrés, S. Conde, F., San Segundo, P.A. and Bueno, A. (2012)  Reversal of PCNA ubiquitylation by Ubp10 in Saccharomyces cerevisiae. PLoS Genetics 8(7): e1002826. published online 19th July 2012; doi:10.1371/journal.pgen.1002826

Cordón-Preciado, V., Ufano, S. and Bueno, A. (2006) Limiting amounts of budding yeast Rad53 S-phase checkpoint activity results in increased resistance to DNA alkylation damage. Nucleic Acids Research 34: 5852-5862. doi:10.1093/nar/gkl741

Esteban V., Blanco M., Cueille N., Simanis V., Moreno S., and Bueno A. (2004). A role for the Cdc14-family phosphatase Flp1p at the end of the cell cycle in fission yeast in controlling the rapid degradation of the mitotic inducer Cdc25p. J. Cell Science 117, 2461-2468. doi:10.1242/jcs.01107

Calzada J.A*., Sacristán, M. P*., Sánchez, E., and Bueno A. (2001). Cdc6 cooperates with Sic1 and Hct1 to inactivate mitotic cyclin-dependent kinases. Nature 412, 355-358. doi:10.1038/35085610

(*) Equal contribution

 

 

 

 

 

María Sacristán

Selected publications

 

Álvarez, V*., Frattini, C*., Sacristán, M.P*., Gallego-Sánchez, A., Bermejo, R. and Bueno, A. (2019). PCNA Deubiquitylases Control DNA Damage Bypass at Replication Forks. Cell Reports 29: 1323-1335. doi: 10.1016/j.celrep.2019.09.054

Ovejero, S., Ayala, P., Pimentel-Muiños, FX., Malumbres, M., Bueno, A., and Sacristán, M.P. (2018) Biochemical analyses reveal amino acid residues critical for cell cycle-dependent phosphorylation of human Cdc14A phosphatase by cyclin-dependent kinase 1 02/Enero/2018: Posted on bioRxiv: http://biorxiv.org/cgi/content/short/242016v1 (doi: 10.1101/242016). Scientific Reports 8: 11871. doi: 10.1038/s41598-018-30253-8

Ovejero, S., Ayala, P., Bueno, A., and Sacristán, M.P. (2012). Human Cdc14A regulates Wee1 stability by counteracting CDK-mediated phosphorylation. Molecular Biology of the Cell 23: 4515-4525 published online 10th October 2012; doi:10.1091/mbc.E12-04-0260

Vázquez-Novelle, M.D., Esteban, V., Bueno, A. and Sacristán, M.P. (2005) Functional homology among human and fission yeast Cdc14 phosphatases. The Journal of Biological Chemistry 280, 29144-29150. doi:10.1074/jbc.M413328200

Calzada J.A.*, Sacristán, M.P.*, Sánchez, E., and Bueno A. (2001). Cdc6 cooperates with Sic1 and Hct1 to inactivate mitotic cyclin-dependent kinases. Nature 412, 355-358. doi:10.1038/35085610

(*) Equal contribution

 

 

 

Avelino Bueno, publications

Cañas, J.C., Jurado-Santiago, D., Al Mamun, M., Sacristán M.P., Monfraile, E., Zamarreño, J., Fujiki, K., Shirahige, K., Bueno, A.* and Bermejo, R.* (2024) Strand asymmetry of DNA damage tolerance mechanisms. Posted on BioRxiv:  (doi: https://doi.org/10.1101/2024.01.21.576515 ). 

Zamarreño, J., Muñoz, S., Alonso, E., Alcalá, M., Bermejo, R., Sacristán*, M.P. and  Bueno*, A. (2024). Timely lagging strand maturation relies on Ubp10-mediated PCNA dissociation from replicating chromatin. Posted online BioRxiv: (doi: 10.1101/2024.01.05.574312).

Zamarreño, J., Bueno*, A., y Sacristán*, M. (2023). Ubiquitin protease Ubp1 cooperates with Ubp10 and Ubp12 to revert Lysine-164 PCNA ubiquitylation at replication forks. Posted online BioRxiv: (doi: 10.1101/2023.10.31.564928).

Canete, JA., Andrés, S., Muñoz, S., Zamarreño, J., Rodríguez, S., Díaz-Cuervo, H., Bueno*, A., and Sacristán*, M. (2023). Fission yeast Cdc14-like phosphatase Flp1/Clp1 modulates the transcriptional response to oxidative stress. Posted online  ResearchSquare: (doi: 10.21203/rs.3.rs-2472241/v1). Published in Scientific Reports 13: 14677. doi: 10.1038/s41598-023-41869-w

Ovejero, S., Bueno, A., and Sacristán, M. P. (2020). Working on genomic stability: From S-phase to Mitosis. Genes 11: 225; doi:10.3390/genes11020225

Álvarez, V., Frattini, C., Sacristán, M. P., Gallego-Sánchez, A., Bermejo, R. and Bueno, A. (2019). PCNA Deubiquitylases Control DNA Damage Bypass at Replication Forks. Cell Reports 29: 1323-1335. doi: 10.1016/j.celrep.2019.09.054

Ovejero, S., Ayala, P., Pimentel-Muiños, FX., Malumbres, M., Bueno, A., and Sacristán, M. P. (2018) Biochemical analyses reveal amino acid residues critical for cell cycle-dependent phosphorylation of human Cdc14A phosphatase by cyclin-dependent kinase 1 02/Enero/2018: Posted online bioRxiv: http://biorxiv.org/cgi/content/short/242016v1 (doi: 10.1101/242016) Scientific Reports 8: 11871. doi: 10.1038/s41598-018-30253-8. PMID: 30089874

Villa-Hernández S, Bueno A, and Bermejo R. (2017). The multiple roles of ubiquitin in regulating challenged DNA replication. Adv Exp Med Biol.1042: 395-419. doi: 10.1007/978-981-10-6955-0_18. PMID: 29357068

Álvarez-Álvarez, V., Viñas, L., Andrés, S., Gallego-Sánchez, A., Sacristán, M. P. and Bueno, A. (2016).  Orderly progression through S-phase requires dynamic ubiquitylation and deubiquitylation of PCNA. Scientific Reports 6: 25513 doi:10.1038/srep25513 (PMID: 27151298)

Sacristán M. P., Vázquez-Novelle, M.D., and Bueno, A. (2014) Bases moleculares del ciclo de división celular en organismos eucariotas. Capítulo 35 “Bioquímica Básica” Herrera-Castillón, E., Ramos-Álvarez, M.P., Roca-Salom, P., y Viana-Arribas, M.M., eds. Editorial Elsevier.  ISBN 9788480868983

Gallego-Sánchez, A., Ufano, S., Andrés, S. y Bueno, A. (2013) Analysis of the tolerance to DNA alkylating damage in Saccharomyces cerevisiae MEC1 and RAD53 checkpoint mutants. PLoS ONE 8(11): e81108. doi: 10.1371/journal.pone.0081108

Ovejero, S., Ayala, P., Bueno, A., and Sacristán, M. P. (2012). Human Cdc14A regulates Wee1 stability by counteracting CDK-mediated phosphorylation. Molecular Biology of the Cell 23: 4515-4525 published online 10th October 2012; doi:10.1091/mbc.E12-04-0260

Gallego-Sánchez, A., Andrés, S. Conde, F., San Segundo, P.A. and Bueno, A. (2012)  Reversal of PCNA ubiquitylation by Ubp10 in Saccharomyces cerevisiae. PLoS Genetics 8(7): e1002826. published online 19th July 2012; doi:10.1371/journal.pgen.1002826

Clemente-Blanco, A., Sen, N., Mayan-Santos, M., Sacristán, M. P., Graham, B., Jarmuz, A., Giess, A., Webb, E., Game, L., Eick, D., Bueno, A.,Merkenschlager, M. and Aragón, L. (2011).  Cdc14 phosphatase promotes segregation of telomeres through repression of RNA polymerase II transcription. Nature Cell Biology 13: 1450-1456. published online 23 October 2011; doi: 10.1038/ncb2365

Sacristán, M.P., Ovejero, S. and Bueno, A. (2011) Human Cdc14A becomes a cell cycle gene in controlling Cdk1 activity at the G2/M transition Cell Cycle 10: 387-391. doi: 10.4161/cc.10.3.14643.

Gallego-Sánchez, A., Conde, F., San Segundo, P.A., y Bueno A. (2010) Control of PCNA deubiquitylation in yeast Biochemical Society Transactions 38:104-9 doi: 10.1042/BST0380104

Conde, F., Ontoso, D., Acosta, I, Gallego-Sánchez, A., Bueno A. and San Segundo, P.A. (2010) Regulation of Tolerance to DNA Alkylating Damage by Dot1 and Rad53 in Saccharomyces cerevisiae DNA Repair 9: 1038-1049  doi:10.1016/j.dnarep.2010.07.003.

Vázquez-Novelle, M.D., Mailand, N., Ovejero, S., Bueno, A., and Sacristán, M. P. (2010) Human Cdc14A phosphatase modulates the G2/M transition through Cdc25A and Cdc25B. J. Biol. Chem 285: 40544–40553 doi: 10.1074/jbc.M110.133009

Esteban, V., Sacristán, M. P., Andrés, S. andy Bueno, A. (2008) The Flp1/Clp1 phosphatase cooperates with HECT-type Pub1/2 protein-ubiquitin ligases in Schizosaccharomyces pombe. Cell Cycle 7: 1269-1276 Cell Cycle online, published 2008 Mar 11;7(9)/PMID: 18418059

Díaz-Cuervo, H., and Bueno, A. (2008) Cds1 controls the release of Cdc14-like phosphatase Flp1 from the nucleolus to drive full activation of the checkpoint response to replication stress in fission yeast. Molecular Biology of the Cell 19: 2488-2499 MBC online, published April 2, 2008, as doi: 10.1091/mbc.E07-08-0737

Esteban, V., Vázquez-Novelle, M.D., Calvo, E., Bueno, A., and Sacristán, M. P. (2006) Human Cdc14A Reverses CDK1 Phosphorylation of Cdc25A on Ser 115 and Ser 320. Cell Cycle 5: 2894-2898

Cordón-Preciado, V., Ufano, S. and Bueno, A. (2006) Limiting amounts of budding yeast Rad53 S-phase checkpoint activity results in increased resistance to DNA alkylation damage. Nucleic Acids Research 34: 5852-5862

Calzada, J. A., Hodgson, B., Kanemaki, M., Bueno, A. and Labib, K. (2005) Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes & Development 19, 1905-1919

Vázquez-Novelle, M.D., Esteban, V., Bueno, A. and Sacristán, M. P. (2005) Functional homology among human and fission yeast Cdc14 phosphatases. The Journal of Biological Chemistry 280, 29144-29150.        

Esteban V., Blanco M., Cueille N., Simanis V., Moreno S., and Bueno A. (2004) A role for the Cdc14-family phosphatase Flp1p at the end of the cell cycle in fission yeast in controlling the rapid degradation of the mitotic inducer Cdc25p. Journal of Cell Science 117, 2461-2468.

Calzada, J. A., and Bueno, A. (2002). Genes involved in the initiation of DNA replication in yeast. Internacional Review of Cytology 212, 133-208.

Sacristán, M. P. and Bueno A. (2002). Salida de Mitosis: Inactivación de CDK y replicación del genoma. Investigación y Ciencia 312, 31-32.

Calzada J.A., Sacristán, M. P., Sánchez, E., and Bueno A. (2001). Cdc6 cooperates with Sic1 and Hct1 to inactivate mitotic cyclin-dependent kinases. Nature 412, 355-358.

Cueille N., Salimova E., Esteban V., Blanco M., Moreno S., Bueno A. and Simanis V. (2001). Flp1, the fission yeast orthologue of the S.cerevisiaeCDC14 gene, is not required for cyclin degradation or rum1p stabilisation at the end of mitosis. J. Cell Science 114, 2649-2664.

Calzada J.A., Bueno A., and Sánchez M.M. (2000). El inicio de la replicación del ADN. ISSN 0717-3849. http://www.ciencia.cl/CienciaAlDia/volumen3/numero1/articulos/articulo3.html.

Calzada, J. A., Sánchez, M. M., Sánchez, E. I., and Bueno, A. (2000). The stability of the Cdc6 protein is regulated by CDK/cyclinB complexes in Saccharomyces cerevisiae. J. Biol. Chem. 275, 9734-9741.

Sánchez M.M., Calzada J.A. and Bueno A. (1999). Functionally homologous DNA replication genes in fission and budding yeast. J. Cell Science112, 2381-2390.

Sánchez M.M., Calzada J.A. and Bueno A. (1999). The S-phase initiator Cdc6 protein is ubiquitinated in vivo for proteolysis in Saccharomyces cerevisiae. J. Biol: Chem. 274, 9092-9098.

Marín, J.J., Macías, R.I.R., Criado, J.J., Bueno, A., Monte, M.J., and Serrano, M.A. (1998). DNA interaction and cytostatic activity of the new liver organotropic complex of cisplatin with glycocholic acid: Bamet-R2. Int. J. Cancer 78, 346-352.

Tang, C.S.L., Bueno, A and Russell, P. (1994). ntf1+ encodes a Cys6 zinc finger-containing transcription factor that regulates the nmt1 promoter in fission yeast. J. Biol. Chem. 269, 11921-11926. 

Bueno,A. and Russell,P. (1993). Two fission yeast-type cyclins, Cig2 and Cdc13, have different functions in mitosis. Mol. Cell. Biol. 13, 2286-2297. 

Bueno,A. and Russell,P. (1992). Dual functions of CDC6: a yeast protein required for DNA replication also inhibits nuclear division. The EMBO J.11, 2167-2176.

Bueno,A. and Russell,P. (1992). Cig1, a new class of cyclin B functioning early in the cell cycle. En “Tumor suppressor genes” D.Livingstone and E.Mihich, eds. John Libbey, s.r.L. New York  pp.71-81. ISBN 88-85972-01-2.

Bueno,A., Richardson,H., Reed,S.I. and Russell,P. (1991). A fission yeast B-type cycling functioning early in the cell cycle. Cell 66, 149-159.

Millar,J.B.A., McGowan,C.H., Jones,R.H., Shadu,K., Bueno,A., Richardson,H. and Russell,P.  (1991). cdc25 M-Phase Inducer. Cold Spring Harbor Symposia in Quantitative Biology. Vol LVI. 577-584.

Vázquez de Aldana,C.R., Correa,J., San Segundo,P., Bueno,A., Nebreda,A.R., Méndez,E. and del Rey,F. (1991). Nucleotide sequence of the Exo-1,3--glucanase encoding gene, EXG1, of the yeast Saccharomyces cerevisiae. Gene 97, 173-182.

Bueno,A., Vázquez de Aldana,C.R., Correa,J. and del Rey,F. (1990). Nucleotide sequence of 1,3-1,4--D-glucanase-encoding gene in Bacillus circulans WL-12. Nucleic Acid Research 18, 4248.

Bueno,A., Vázquez de Aldana,C.R., Correa, J., Villa,T.G. and del Rey,F. (1989). Synthesis and secretion of a Bacillus circulans WL-12 1,3-1,4--D-glucanase in Escherichia coli. Journal of Bacteriology 172, 2160-2167.

Bueno,A., Villanueva,J.R. and Villa,T.G.  (1986). Methylation of spore DNA in Bacillus coagulans strain 26. Journal of General Microbiology 136, 2899-2905

 

María Sacristán, publications

Cañas, J.C., Jurado-Santiago, D., Al Mamun, M., Sacristán M.P., Monfraile, E., Zamarreño, J., Fujiki, K., Shirahige, K., Bueno, A.* and Bermejo, R.* (2024) Strand asymmetry of DNA damage tolerance mechanisms. Posted on BioRxiv:  (doi: https://doi.org/10.1101/2024.01.21.576515 ). 

Zamarreño, J., Muñoz, S., Alonso, E., Alcalá, M., Bermejo, R., Sacristán*, M.P. and  Bueno*, A. (2024). Timely lagging strand maturation relies on Ubp10-mediated PCNA dissociation from replicating chromatin. Posted online BioRxiv: (doi: 10.1101/2024.01.05.574312).

Zamarreño, J., Bueno*, A., y Sacristán*, M. (2023). Ubiquitin protease Ubp1 cooperates with Ubp10 and Ubp12 to revert Lysine-164 PCNA ubiquitylation at replication forks. Posted online BioRxiv: (doi: 10.1101/2023.10.31.564928).

Canete, JA., Andrés, S., Muñoz, S., Zamarreño, J., Rodríguez, S., Díaz-Cuervo, H., Bueno*, A., and Sacristán*, M. (2023). Fission yeast Cdc14-like phosphatase Flp1/Clp1 modulates the transcriptional response to oxidative stress. Posted online  ResearchSquare: (doi: 10.21203/rs.3.rs-2472241/v1). Published in Scientific Reports 13: 14677. doi: 10.1038/s41598-023-41869-w

Ovejero, S., Bueno, A., and Sacristán, M.P. (2020). Working on genomic stability: From S-phase to Mitosis. Genes 11: 225; doi:10.3390/genes11020225

Gómez-Orte E., Sáenz-Narciso B., Zheleva A., Ezcurra B., de Toro M., López R., Gastaca I., Nilsen H., Sacristán M.P., Schnabel R. and Cabello J. (2019). Disruption of the Caenorhabditis elegans Integrator complex triggers a non-conventional transcriptional mechanism beyond snRNA genes. PLOS Genetics 15 (2):1-31. doi:10.1371/journal.pgen.1007981.

Hached K., Goguet P., Charrasse S., Vigneron S, Sacristán M.P., Lorca T. and Castro A. (2019). ENSA and ARPP19 differentially control cell cycle progression and development. Journal Cell Biology 218(2): 541-558. doi:10.1083/jcb.201708105.

Álvarez, V*., Frattini, C*., Sacristán, M.P*., Gallego-Sánchez, A., Bermejo, R. and Bueno, A. (2019). PCNA Deubiquitylases Control DNA Damage Bypass at Replication Forks. Cell Reports 29: 1323-1335. doi: 10.1016/j.celrep.2019.09.054

Ovejero, S., Ayala, P., Pimentel-Muiños, FX., Malumbres, M., Bueno, A., and Sacristán, M.P. (2018) Biochemical analyses reveal amino acid residues critical for cell cycle-dependent phosphorylation of human Cdc14A phosphatase by cyclin-dependent kinase 1. Scientific Reports 8: 11871. doi: 10.1038/s41598-018-30253-8

Álvarez-Álvarez, V., Viñas, L., Andrés, S., Gallego-Sánchez, A., Sacristán, M.P. and Bueno, A. (2016).  Orderly progression through S-phase requires dynamic ubiquitylation and deubiquitylation of PCNA. Scientific Reports 6: 25513 doi:10.1038/srep25513 (PMID: 27151298)

Boada-Romero, E; Serramito-Gomez; Sacristán, M.P; Boone, DL; Xavier, RJ; Pimentel-Muiños, FX. (2016). The T300A Crohn’s disease risk polymorphism impairs function of the WD40 domain of ATG16L1. Nature Communications 7:11821. doi:10.1038/ncomms11821

Sacristán M.P., Vázquez-Novelle, M.D., and Bueno, A. (2014) Bases moleculares del ciclo de división celular en organismos eucariotas. Capítulo 35 “Bioquímica Básica” Herrera-Castillón, E., Ramos-Álvarez, M.P., Roca-Salom, P., y Viana-Arribas, M.M., eds. Editorial Elsevier.  ISBN 9788480868983

Mackintosh C., García-Domínguez D.J., Ordóñez J.L., Ginel-Picardo A., Smith P.G., Sacristán M.P., Alava E. (2013). WEE1 accumulation and deregulation of S-phase proteins mediate MLN4924 potent inhibitory effect on Swing sarcoma cells. Oncogene 32:1441-1451. doi: 10.1038/onc.2012.153.

Ovejero, S., Ayala, P., Bueno, A., and Sacristán, M.P. (2012). Human Cdc14A regulates Wee1 stability by counteracting CDK-mediated phosphorylation. Molecular Biology of the Cell 23: 4515-4525 published online 10th October 2012; doi:10.1091/mbc.E12-04-0260

Clemente-Blanco, A., Sen, N., Mayan-Santos, M., Sacristán, M.P., Graham, B., Jarmuz, A., Giess, A., Webb, E., Game, L., Eick, D., Bueno, A., Merkenschlager, M. and Aragón, L. (2011). Cdc14 phosphatase promotes segregation of telomeres through repression of RNA polymerase II transcription. Nature Cell Biology 13: 1450-1456. published online 23 October 2011; doi: 10.1038/ncb2365

Guillamot M., Manchado E., Chiesa M., Gómez-López G., Pisano D., Sacristán M.P., and Malumbres M. (2011). Cdc14b regulates mammalian RNA polymerase II and represses cell cycle transcription. Scientific Reports 1, 189; doi:10.1038/srep00189.

Sacristán, M.P., Ovejero, S. and Bueno, A. (2011) Human Cdc14A becomes a cell cycle gene in controlling Cdk1 activity at the G2/M transition Cell Cycle 10: 387-391. doi: 10.4161/cc.10.3.14643.

Vázquez-Novelle, M.D., Mailand, N., Ovejero, S., Bueno, A., and Sacristán, M.P. (2010) Human Cdc14A phosphatase modulates the G2/M transition through Cdc25A and Cdc25B. The Journal of Biological Chemistry 285: 40544–40553 doi: 10.1074/jbc.M110.133009

Esteban, V., Sacristán, M.P., Andrés, S. and Bueno, A. (2008) The Flp1/Clp1 phosphatase cooperates with HECT-type Pub1/2 protein-ubiquitin ligases in Schizosaccharomyces pombe. Cell Cycle 7: 1269-1276 Cell Cycle on line, published 2008 Mar 11;7(9)/PMID: 18418059

Esteban, V., Vázquez-Novelle, M.D., Calvo, E., Bueno, A., and Sacristán, M.P. (2006) Human Cdc14A Reverses CDK1 Phosphorylation of Cdc25A on Ser 115 and Ser 320. Cell Cycle 5: 2894-2898

Vázquez-Novelle, M.D., Esteban, V., Bueno, A. and Sacristán, M.P. (2005) Functional homology among human and fission yeast Cdc14 phosphatases. The Journal of Biological Chemistry 280, 29144-29150.

Calzada J.A.*, Sacristán, M.P.*, Sánchez, E., and Bueno A. (2001). Cdc6 cooperates with Sic1 and Hct1 to inactivate mitotic cyclin-dependent kinases. Nature 412, 355-358.

Monte, M. J., Badia, M. D., Serrano, M. A., Sacristán, M. P., Cassio, D. and Marín, J. J. (2001) Predominace of human versus rat phenotype in the metabolic pathways for bile acid synthesis by hybrid WIF-B9 cells. Bioch. Bioph. Acta 1534:45-55

Cuadrado, M., Sacristán, M.P. and Antequera F. (2001) Species-specific organization of CpG island promoters at mammalian homologous genes. EMBO reports 2:586-592

Sacristán, M.P., de Diego J., Bonilla, M., and Martín-Zanca D. (1999) Molecular Cloning and Characterization of the 5´region of the mouse trkA proto-oncogene. Oncogene 18: 5836-5842

Chang, B.B.; Persengiev, S.P., de Diego, J.G.; Sacristán, M.P.; Martín-Zanca, D. and Kilpatrick, D.L. (1998) Proximal promoter sequences mediate cell-specific and elevated expression of the favorable prognosis marker trkA in human neuroblastoma cells. The Journal of Biological Chemistry 273:39-44

Sacristán, M.P., D.J. Vestal, M.T. Dours-Zimmermann and Ranscht, B. (1993) T-Cadherin 2: molecular characterization, function in cell adhesion, and coexpression with T-cadherin and N-cadherin. Journal of Neuroscience Research 34: 664-680

Bardají, E., Torres, J.L., Clapés, P., Albericio, F., Barny, G., Rodríguez, R., Sacristán, M.P., and Valencia, G. (1991) Synthesis and biological activity of O-glycosylated morphiceptin analogues. Journal of the Chemical Society, PerkinTrasactions 1:1755-1759

Rodríguez, R.E., Rodríguez, F.D., Sacristán, M.P., Torres, J.L., Reig, F., García-Antón, J.M., and Valencia, G. (1990) Antinociceptive activity of glycosidic enkephalin analogues. Psychopharmacology 101: 222-225

Rodríguez, R.E., and Sacristán, M.P. (1989) In vivo release of CCK-8 from the dorsal horn of the rat: Inhibition by DAGOL. FEBS Letters 250: 215-217

Rodríguez, R.E., Rodríguez, F.D., Sacristán, M.P., Valencia, G., and García-Antón, J.M. (1989) New glycosylpeptides with high antinociceptive activity. Neuroscience Letters 101: 89-94

Rodríguez, R.E., and Sacristán, M.P. (1988) Present state of knowledge on opiod receptors. Revista de Farmacología Clínica y Experimental 5: 141-143